Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gamma-ray Irradiation Effects on InAs/GaSb-based nBn IR Detector

Identifieur interne : 002E41 ( Main/Repository ); précédent : 002E40; suivant : 002E42

Gamma-ray Irradiation Effects on InAs/GaSb-based nBn IR Detector

Auteurs : RBID : Pascal:11-0232798

Descripteurs français

English descriptors

Abstract

IR detectors operated in a space environment are subjected to a variety of radiation effects while required to have very low noise performance. When properly passivated, conventional mercury cadmium telluride (MCT)-based infrared detectors have been shown to perform well in space environments. However, the inherent manufacturing difficulties associated with the growth of MCT has resulted in a research thrust into alternative detector technologies, specifically type-II Strained Layer Superlattice (SLS) infrared detectors. Theory predicts that SLS-based detector technologies have the potential of offering several advantages over MCT detectors including lower dark currents and higher operating temperatures. Experimentally, however, it has been found that both p-on-n and n-on-p SLS detectors have larger dark current densities than MCT-based detectors. An emerging detector architecture, complementary to SLS-technology and hence forth referred to here as nBn, mitigates this issue via a uni-polar barrier design which effectively blocks majority carrier conduction thereby reducing dark current to more acceptable levels. Little work has been done to characterize nBn IR detectors tolerance to radiation effects. Here, the effects of gamma-ray radiation on an nBn SLS detector are considered. The nBn IR detector under test was grown by solid source molecular beam epitaxy and is composed of an InAs/GaSb SLS absorber (n) and contact (n) and an AlxGa1-xSb barrier (B). The radiation effects on the detector are characterized by dark current density measurements as a function of bias, device perimeter-to-area ratio and total ionizing dose (TID).

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0232798

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Gamma-ray Irradiation Effects on InAs/GaSb-based nBn IR Detector</title>
<author>
<name sortKey="Cowan, Vincent M" uniqKey="Cowan V">Vincent M. Cowan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Air Force Research Laboratory --Space Vehicles Directorate, 3550 Aberdeen Ave SE, Kirtland AFB</s1>
<s2>NM 87117</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Morath, Christian P" uniqKey="Morath C">Christian P. Morath</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Air Force Research Laboratory --Space Vehicles Directorate, 3550 Aberdeen Ave SE, Kirtland AFB</s1>
<s2>NM 87117</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Swift, Seth M" uniqKey="Swift S">Seth M. Swift</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Air Force Research Laboratory --Space Vehicles Directorate, 3550 Aberdeen Ave SE, Kirtland AFB</s1>
<s2>NM 87117</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Myers, Stephen" uniqKey="Myers S">Stephen Myers</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Center for High Technology Materials, University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gautam, Nutan" uniqKey="Gautam N">Nutan Gautam</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Center for High Technology Materials, University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Krishna, Sanjay" uniqKey="Krishna S">Sanjay Krishna</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Center for High Technology Materials, University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87106</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0232798</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0232798 INIST</idno>
<idno type="RBID">Pascal:11-0232798</idno>
<idno type="wicri:Area/Main/Corpus">003187</idno>
<idno type="wicri:Area/Main/Repository">002E41</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compounds</term>
<term>Cadmium tellurides</term>
<term>Current density</term>
<term>Current measurement</term>
<term>Density measurement</term>
<term>Gamma irradiation</term>
<term>Gamma radiation</term>
<term>Indium Arsenides</term>
<term>Infrared detectors</term>
<term>Manufacturing</term>
<term>Mercury tellurides</term>
<term>Molecular beam epitaxy</term>
<term>Radiation detectors</term>
<term>Radiation effects</term>
<term>Strains</term>
<term>Superlattices</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet rayonnement</term>
<term>Déformation mécanique</term>
<term>Mesure densité</term>
<term>Détecteur rayonnement</term>
<term>Détecteur IR</term>
<term>Epitaxie jet moléculaire</term>
<term>Courantométrie</term>
<term>Densité courant</term>
<term>Superréseau</term>
<term>Composé binaire</term>
<term>Indium Arséniure</term>
<term>Irradiation gamma</term>
<term>Rayonnement gamma</term>
<term>Tellurure de mercure</term>
<term>Tellurure de cadmium</term>
<term>Fabrication industrielle</term>
<term>InAs</term>
<term>As In</term>
<term>0130C</term>
<term>0707D</term>
<term>0757K</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Fabrication industrielle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">IR detectors operated in a space environment are subjected to a variety of radiation effects while required to have very low noise performance. When properly passivated, conventional mercury cadmium telluride (MCT)-based infrared detectors have been shown to perform well in space environments. However, the inherent manufacturing difficulties associated with the growth of MCT has resulted in a research thrust into alternative detector technologies, specifically type-II Strained Layer Superlattice (SLS) infrared detectors. Theory predicts that SLS-based detector technologies have the potential of offering several advantages over MCT detectors including lower dark currents and higher operating temperatures. Experimentally, however, it has been found that both p-on-n and n-on-p SLS detectors have larger dark current densities than MCT-based detectors. An emerging detector architecture, complementary to SLS-technology and hence forth referred to here as nBn, mitigates this issue via a uni-polar barrier design which effectively blocks majority carrier conduction thereby reducing dark current to more acceptable levels. Little work has been done to characterize nBn IR detectors tolerance to radiation effects. Here, the effects of gamma-ray radiation on an nBn SLS detector are considered. The nBn IR detector under test was grown by solid source molecular beam epitaxy and is composed of an InAs/GaSb SLS absorber (n) and contact (n) and an Al
<sub>x</sub>
Ga
<sub>1-x</sub>
Sb barrier (B). The radiation effects on the detector are characterized by dark current density measurements as a function of bias, device perimeter-to-area ratio and total ionizing dose (TID).</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7945</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Gamma-ray Irradiation Effects on InAs/GaSb-based nBn IR Detector</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Quantum sensing and nanophotonic devices VIII : 23-27 January 2011, San Francisco, California, United States</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>COWAN (Vincent M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MORATH (Christian P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SWIFT (Seth M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MYERS (Stephen)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GAUTAM (Nutan)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>KRISHNA (Sanjay)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>RAZEGHI (Manijeh)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SUDHARSANAN (Rengarajan)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>BROWN (Gail J.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Air Force Research Laboratory --Space Vehicles Directorate, 3550 Aberdeen Ave SE, Kirtland AFB</s1>
<s2>NM 87117</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Center for High Technology Materials, University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>79451S.1-79451S.8</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham WA</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-8482-6</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174731750530</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>12 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0232798</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>IR detectors operated in a space environment are subjected to a variety of radiation effects while required to have very low noise performance. When properly passivated, conventional mercury cadmium telluride (MCT)-based infrared detectors have been shown to perform well in space environments. However, the inherent manufacturing difficulties associated with the growth of MCT has resulted in a research thrust into alternative detector technologies, specifically type-II Strained Layer Superlattice (SLS) infrared detectors. Theory predicts that SLS-based detector technologies have the potential of offering several advantages over MCT detectors including lower dark currents and higher operating temperatures. Experimentally, however, it has been found that both p-on-n and n-on-p SLS detectors have larger dark current densities than MCT-based detectors. An emerging detector architecture, complementary to SLS-technology and hence forth referred to here as nBn, mitigates this issue via a uni-polar barrier design which effectively blocks majority carrier conduction thereby reducing dark current to more acceptable levels. Little work has been done to characterize nBn IR detectors tolerance to radiation effects. Here, the effects of gamma-ray radiation on an nBn SLS detector are considered. The nBn IR detector under test was grown by solid source molecular beam epitaxy and is composed of an InAs/GaSb SLS absorber (n) and contact (n) and an Al
<sub>x</sub>
Ga
<sub>1-x</sub>
Sb barrier (B). The radiation effects on the detector are characterized by dark current density measurements as a function of bias, device perimeter-to-area ratio and total ionizing dose (TID).</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00G07D</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00G57K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Effet rayonnement</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Radiation effects</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Déformation mécanique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Strains</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Mesure densité</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Density measurement</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Détecteur rayonnement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Radiation detectors</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Détecteur IR</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Infrared detectors</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>30</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Courantométrie</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Current measurement</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Corrientimetría</s0>
<s5>31</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Densité courant</s0>
<s5>41</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Current density</s0>
<s5>41</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Superréseau</s0>
<s5>47</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Superlattices</s0>
<s5>47</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Irradiation gamma</s0>
<s5>61</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Gamma irradiation</s0>
<s5>61</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Irradiación gama</s0>
<s5>61</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Rayonnement gamma</s0>
<s5>62</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Gamma radiation</s0>
<s5>62</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Tellurure de mercure</s0>
<s2>NK</s2>
<s5>63</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Mercury tellurides</s0>
<s2>NK</s2>
<s5>63</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Tellurure de cadmium</s0>
<s2>NK</s2>
<s5>64</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Cadmium tellurides</s0>
<s2>NK</s2>
<s5>64</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Fabrication industrielle</s0>
<s5>65</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Manufacturing</s0>
<s5>65</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>0707D</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>0757K</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fN21>
<s1>157</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Quantum sensing and nanophotonic devices</s1>
<s2>08</s2>
<s3>San Francisco CA USA</s3>
<s4>2011</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E41 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002E41 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0232798
   |texte=   Gamma-ray Irradiation Effects on InAs/GaSb-based nBn IR Detector
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024